skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pfaff, R_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Pedersen component of the Lorentz force produces an acceleration that is generally in the zonal direction in much of the dawn and dusk sectors in the auroral oval. During geomagnetically disturbed conditions, as the neutral flow begins to accelerate through the ion drag force and the flow speeds increase, a balance develops in the meridional direction between the Coriolis, curvature, and pressure gradient forces, which are dominant in the lower thermosphere. The gradient wind equation that describes this balance predicts that the cyclonic flow on the dawn side is limited to the so‐called regular solution, which has a maximum value of twice the geostrophic wind speed. The anticyclonic flow on the dusk side, on the other hand, can satisfy either the regular or anomalous solution with a transition at twice the geostrophic wind speed. The anomalous flow solutions have wind speeds significantly greater than the transition value, but are limited by the inertial wind value, that is, the value that corresponds to a balance between the curvature and Coriolis forces. The analysis is carried out to show this result, which indicates that a significant quantitative asymmetry is expected between the dawn‐ and dusk‐side flow, as is observed and has been shown in both observations and a number of numerical modeling studies. Implications for the wind distribution of perturbed pressure gradients and inertial instability are discussed. 
    more » « less